首页 | 本学科首页   官方微博 | 高级检索  
     


Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes
Authors:Le Cai  Suoming Zhang  Jinshui Miao  Zhibin Yu  Chuan Wang
Affiliation:1. Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA;2. Department of Industrial and Manufacturing Engineering, Florida State University, Tallahassee, FL, USA
Abstract:The realization of large‐area and low‐cost flexible macroelectronics relies on both the advancements in materials science and the innovations in manufacturing techniques. In this study, extremely bendable and foldable carbon nanotube thin film transistors and integrated logic gates are fabricated on a piece of ultrathin polyimide substrate through an ink‐jet‐like printing process. The adoption of a hybrid gate dielectric layer consisting of barium titanate nanoparticles and poly(methyl methacrylate) has led to not only excellent gating effect but also superior mechanical compliance. The device characteristics show negligible amount of change after up to 1000 cycles of bending tests with curvature radii down to 1 mm, as well as very aggressive folding tests. Additionally, the electrical characteristics of each integrated logic gate can be tuned and optimized individually by using different numbers of carbon nanotube printing passes for different devices, manifesting the unique adaptability of ink‐jet printing as a digital, additive, and maskless method. This report on fully printed and foldable integrated logic gates represents an inspiring advancement toward the practical applications of carbon nanotubes for high‐performance and low‐cost ubiquitous flexible electronics.
Keywords:carbon nanotubes  flexible electronics  foldable electronics  hybrid dielectric  printed electronics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号