首页 | 本学科首页   官方微博 | 高级检索  
     


Transparent Lu2O3:Eu ceramics by sinter and HIP optimization
Authors:ZM Seeley  JD KuntzNJ Cherepy  SA Payne
Affiliation:Chemical Sciences Division, Lawrence Livermore National Laboratory, United States
Abstract:Evolution of porosity and microstructure was observed during densification of lutetium oxide ceramics doped with europium (Lu2O3:Eu) fabricated via vacuum sintering and hot isostatic pressing (HIP’ing). Nano-scale starting powder was uniaxially pressed and sintered under high vacuum at temperatures between 1575 and 1850 °C to obtain densities ranging between 94% and 99%, respectively. Sintered compacts were then subjected to 200 MPa argon gas at 1850 °C to reach full density. Vacuum sintering above 1650 °C led to rapid grain growth prior to densification, rendering the pores immobile. Sintering between 1600 and 1650 °C resulted in closed porosity yet a fine grain size to allow the pores to remain mobile during the subsequent HIP’ing step, resulting in a fully-dense highly transparent ceramic without the need for subsequent air anneal. Light yield performance was measured and Lu2O3:Eu showed ∼4 times higher light yield than commercially used scintillating glass indicating that this material has the potential to improve the performance of high energy radiography devices.
Keywords:Lutetium oxide  Transparent ceramic  Densification  Vacuum sintering  Hot isostatic pressing
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号