首页 | 本学科首页   官方微博 | 高级检索  
     


Silicon npn bipolar transistors with indium-implanted base regions
Authors:Kizilyalli   I.C. Chen   A.S. Nagy   W.J. Rich   T.L. Ham   T.E. Lee   K.H. Carroll   M.S. Iannuzzi   M.
Affiliation:Bell Labs., Lucent Technol., Orlando, FL;
Abstract:In this paper, silicon npn bipolar transistors with indium-implanted base regions are discussed. Polysilicon emitter bipolar transistors are fabricated using a standard 0.5-μm BIC-MOS process flow where the base BF2 implant is replaced by an indium implant. In indium-implanted transistors, the integrated hole concentration (Gb) in the quasi-neutral base is reduced due to incomplete ionization of indium acceptor states. The novel utilization of this impurity freeze-out effect results in much increased collector currents and common-emitter transistor gains (hfe) compared to boron-implanted transistors. Also, since indium acceptor states in depletion regions become fully ionized, the spreading of the reverse-biased collector-base junction depletion region into the transistor base (base-width modulation) is minimized. Hence, for indium base bipolar transistor an improved hfe-VA product is anticipated. Our first attempt at fabricating bipolar transistors with indium-implanted base regions resulted in devices with greatly increased collector current, impressive gains of hfe≈1600, excellent collector current saturation characteristics, an Early Voltage of VA≈10 V, hfe-VA product of 16000 (implying an extended device design space), base-emitter breakdown voltages of BVEBO≈9.6 V, and a cut-off frequency of ft=17.8 GHz
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号