摘 要: | SURF(speed-up robust features,即加速健壮特征)算法是一种尺度不变、旋转不变且性能较好的算法,但其稳定性和时间复杂度不足,不稳定的特征点被检测出来,会导致多余的计算。为此,提出用信息量扩展SURF检测算子和分特征集匹配方法,提高算法性能和配准速度,即先检测周围Hessian值最大的特征点,再用SURF算法计算特征点的信息量,然后根据尺度分解特征集成亚集,再根据亚集匹配,最后根据RANSAC和最小二乘法配准。实验结果证明,改进算法的配准性能与SURF算法相当,配准速度比SURF算法更快。
|