首页 | 本学科首页   官方微博 | 高级检索  
     


Static and dynamic interactive buckling of isotropic thin-walled closed columns with variable thickness
Authors:A. Teter  
Affiliation:aDepartment of Applied Mechanics, Technical University of Lublin, Nadbystrzycka 36, 20-618 Lublin, Poland
Abstract:The present paper deals with static and dynamic analysis of interactive buckling of thin-walled closed columns with variable thickness subjected to in-plane constant and/or pulse loading. This investigation is concerned with thin-walled structures with corners bevelled at the angle of 45° under axial compression. The plate model is adopted for the structures. The material, all plates are made of, is subject to Hooke's law. The structures are assumed to be simply supported at the ends. The differential equations of motion have been obtained from Hamilton's principle. In this paper the static solution has been obtained by Koiter's asymptotic method in the second-order approximation. The study is based on the numerical method of the transition matrix using Godunov's orthogonalization. The interaction of an overall mode with two local modes having the same wavelength has been considered (i.e. three-mode approach). The nonlinear equations of dynamic stability are solved with the Runge–Kutta method. The calculations are carried out for settled imperfections.
Keywords:Dynamic buckling   Thin-walled structures   In-plane pulse loading   Interactive buckling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号