首页 | 本学科首页   官方微博 | 高级检索  
     

基于负熵和智能优化算法的盲源分离方法
引用本文:岳克强,赵知劲,沈雷. 基于负熵和智能优化算法的盲源分离方法[J]. 计算机工程, 2010, 36(4): 250-252
作者姓名:岳克强  赵知劲  沈雷
作者单位:杭州电子科技大学通信工程学院,杭州,310018
基金项目:电科院预研课题基金资助项目(41101040102)
摘    要:针对混合蛙跳算法(SFLA)更新策略会陷入局部最优、降低收敛速度的问题,提出一种自适应阈值更新策略。根据盲源分离中常用峭度和负熵作为非高斯性的度量,但峭度对野值敏感,影响算法性能,研究一种基于负熵准则的采用粒子群优化(PSO)算法和混合蛙跳算法的盲源分离方法。仿真结果表明,基于负熵的盲分离算法性能优于基于峭度的盲分离算法,基于SFLA的盲分离算法性能优于基于PSO的盲分离算法。

关 键 词:盲源分离  粒子群优化算法  混合蛙跳算法  阈值选择  负熵  峭度
修稿时间: 

Blind Source Separation Method Based on Negative Entropy and Intelligent Optimization Algorithm
YUE Ke-qiang,ZHAO Zhi-jin,SHEN Lei. Blind Source Separation Method Based on Negative Entropy and Intelligent Optimization Algorithm[J]. Computer Engineering, 2010, 36(4): 250-252
Authors:YUE Ke-qiang  ZHAO Zhi-jin  SHEN Lei
Affiliation:(Telecommunication Engineering School, Hangzhou Dianzi University, Hangzhou 310018)
Abstract:Aiming at the problem of slowing the convergence and facing local optimization of Shuffled Frog Leaping Algorithm(SFLA) update strategy, this paper proposes a update strategy of adaptive threshold selection is raised. Kurtosis and negative entropy are used as a measure of non-Gaussian in Blind Source Separation(BSS), but kurtosis is sensitive to outliers affecting performance of BSS, it researches a criteria of negative entropy based on Particle Swarm Optimization(PSO) algorithm and SFLA. Simulation results show that the proposed BSS of negative entropy has significant performance improvement over BSS of Kurtosis and BSS based on SFLA has better performance over BSS based on PSO.
Keywords:Blind Source Separation(BSS)  Particle Swarm Optimization(PSO) algorithm  Shuffled Frog Leaping Algorithm(SFLA)  threshold selection  negative entropy  kurtosis
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号