首页 | 本学科首页   官方微博 | 高级检索  
     

高维数据的1-范数支持向量机集成特征选择
引用本文:鲍捷,杨明,刘会东. 高维数据的1-范数支持向量机集成特征选择[J]. 计算机科学与探索, 2012, 0(10): 948-953
作者姓名:鲍捷  杨明  刘会东
作者单位:南京师范大学 计算机科学与技术学院,南京 210046
基金项目:国家自然科学基金 No.61003116;江苏省自然科学基金重点项目 No.BK2011005;江苏省自然科学基金 Nos.BK2011782,BK2010263~~
摘    要:特征选择是机器学习和模式识别领域的关键问题之一.随着模式识别与数据挖掘的深入,研究对象越来越复杂,对象的特征维数也越来越高,此时特征选择的稳定性也显得尤为重要.分析了1-范数支持向量机,用该方法对高维数据进行特征选择,并对特征选择的结果进行集成;提出了一种针对高维数据的稳定性度量方法;在基因表达数据上的实验结果表明,集成特征选择可以有效提高算法的稳定性.

关 键 词:特征选择  高维数据  稳定性  1-范数支持向量机  集成

Ensemble Feature Selection Based on 1-Norm Support Vector Machine for High-Dimensional Data
BAO Jie , YANG Ming, LIU Huidong. Ensemble Feature Selection Based on 1-Norm Support Vector Machine for High-Dimensional Data[J]. Journal of Frontier of Computer Science and Technology, 2012, 0(10): 948-953
Authors:BAO Jie    YANG Ming   LIU Huidong
Affiliation:School of Computer Science and Technology, Nanjing Normal University, Nanjing 210046, China
Abstract:Feature selection is one of the key issues in the field of machine learning and pattern recognition. With pattern recognition and data mining becoming increasingly deeper, the target of research becoming more and more complex and the dimension of feature becoming higher and higher, the stability of feature selection is particularly important. Based on the sparse SVM (support vector machine) model, this paper analyzes L 1 SVM (1-norm support vector machine), applies this method to feature selection on high-dimensional data and integrates the results of feature selection according to ensemble learning principle of feature selection. Moreover, the paper designs a new stability measure for high-dimensional data. The experimental results on the gene expression data demonstrate that ensemble feature selection is able to effectively improve the stability of feature selection.
Keywords:feature selection  high-dimensional data  stability  1-norm support vector machine (L 1 SVM)  ensemble
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号