首页 | 本学科首页   官方微博 | 高级检索  
     

城市噪声监测平台的设计与实现
引用本文:林麒光,陈一洲,夏京,向超胜,朱向军,杭福兵,刘小峰. 城市噪声监测平台的设计与实现[J]. 电子测量技术, 2020, 0(3): 170-174
作者姓名:林麒光  陈一洲  夏京  向超胜  朱向军  杭福兵  刘小峰
作者单位:河海大学物联网工程学院;江苏省常州市环境监测中心;恩智浦半导体;常州市公交集团
基金项目:江苏省重点研发计划项目(BE2017071,BE2017647,BE2018004-04);常州市国际合作项目(CZ20170018)资助。
摘    要:城市噪声在不同程度上影响人们的日常生活。为了全面监测城市中的噪声,分析其时空分布特征及其类别,以便针对性实施治理,研发了一种基于公共移动载体上低成本综合监测终端与监测系统。城市噪声监测终端采用低成本开发板Sed Board为处理单元,采用i436噪声传感器,该开发板上有板载的主控芯片Zynq-7000 ALL Programmable SoC集成ARMCortex-A9双核以及最多可达500万多个逻辑门的可编程逻辑单元能够灵活地用于各种目标应用,采用其ALSA音频架构实现噪声数据采集,利用ZedBoard自带网口将音频数据传输到pc端,在pc端通过基于PyTorch框架的声谱分析算法,将采集的噪声识别为载体噪声、交通噪声、商业噪声、生活噪声3类主要噪声,测试集上分类准确率为98.2700%。

关 键 词:城市噪声  噪声分类  移动监测平台  卷积神经网络

Mobile monitoring platform for urban noise design and implantation
Lin Qiguang,Chen Yizhou,Xia Jing,Xiang Chaosheng,Zhu Xiangjun,Hang Fubing,Liu Xiaofeng. Mobile monitoring platform for urban noise design and implantation[J]. Electronic Measurement Technology, 2020, 0(3): 170-174
Authors:Lin Qiguang  Chen Yizhou  Xia Jing  Xiang Chaosheng  Zhu Xiangjun  Hang Fubing  Liu Xiaofeng
Affiliation:(College of Internet of Things Engineering,Hohai University,Changzhou 213000,China;Jiangsu Changzhou Environmental Monitoring Center,Changzhou 213000,China;NXP Semiconductors,Suzhou 215000,China;Changzhou Public Transport Group,Changzhou 213000,China)
Abstract:Urban noise affects people′s daily life to varying degrees.In order to comprehensively monitor the noise in the city,analyze its spatial and temporal distribution characteristics and categories,in order to implement targeted governance,a low-cost integrated monitoring terminal and monitoring system based on public mobile carriers was developed.Sed Board,a low-cost development board,is used as the processing unit and i436 noise sensor is used in the urban noise monitoring terminal.The main control chip Zynq-7000 ALL Programmable SoC on the development board,which integrates ARM Cortex-A9 dual-core and programmable logic units with up to 5 million logic gates,can be flexibly used in various target applications.The noise data acquisition is realized by using its ALSA audio architecture,and the audio data is transmitted to the PC terminal through ZedBoard′s own network port.At the PC terminal,the collected noise is recognized as carrier noise,traffic noise,commercial noise and living noise by using the spectrum analysis algorithm based on PyTorch framework.The classification accuracy of the test set is tested.98.2700%.
Keywords:noise monitoring  internet of things system design  wireless sensor network  convolutional neural network
本文献已被 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号