首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of nitrile functionalized graphene on the properties of poly(arylene ether nitrile) nanocomposites
Authors:Xulin Yang  Yingqing Zhan  Jian Yang  Hailong Tang  Fanbing Meng  Jiachun Zhong  Rui Zhao  Xiaobo Liu
Affiliation:Research Branch of Functional Materials, Institute of Microelectronic and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, PR China
Abstract:In this study, novel nitrile functionalized graphene (GN‐nitrile)/poly(arylene ether nitrile) (PEN) nanocomposites were prepared by an easy solution‐casting method and investigated for the effect of surface modification on the dielectric, mechanical and thermal properties. Graphene (GN) was first functionalized by introduction of nitrile groups onto the GN plane, which was confirmed by scanning electron microscopy, differential scanning calorimetry, Fourier transform infrared spectroscopy, thermogravimetric analysis and dispersibility research. Compared with pure GN, the grafted nitrile groups on the GN‐nitrile can interact with nitrile groups in PEN and lead to flat but better dispersion and stronger adhesion in/to the PEN matrix. Consequently, GN‐nitrile had a more significant enhancement effect on the properties of PEN. The dielectric constant of the PEN/GN‐nitrile nanocomposite with 5 wt% GN‐nitrile reaches 11.5 at 100 Hz, which is much larger than that of the pure PEN matrix (3.1). Meanwhile, dielectric loss is quite small and stable and the dielectric properties showed little frequency dependence. For 5 wt% GN‐nitrile reinforced PEN composites, increases of 17.6% in tensile strength, 26.4% in tensile modulus and 21 °C in Td5% were obtained. All PEN/GN‐nitrile nanocomposite films can stand high temperature, up to 480 °C. Hence, novel dielectric PEN/GN‐nitrile nanocomposite films with excellent mechanical and thermal properties can be used as dielectric materials under some critical circumstances such as high wear and temperature. Copyright © 2012 Society of Chemical Industry
Keywords:functionalized graphene  poly(arylene ether nitrile)  dispersion  dielectric properties  mechanical properties  thermal properties
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号