首页 | 本学科首页   官方微博 | 高级检索  
     


γ‐Butyrolactone‐processable high‐modulus poly(ester imide)s
Authors:Masatoshi Hasegawa  Yuma Tanaka  Azumi Tominaga
Affiliation:Department of Chemistry, Faculty of Science, Toho University, 2‐2‐1 Miyama, Funabashi, Chiba 274‐8510, Japan
Abstract:γ‐Butyrolactone (GBL)‐processable high modulus heat‐resistant materials were developed in this work. The polyaddition of an ester‐containing tetracarboxylic dianhydride, i.e. hydroquinone bis(trimellitate anhydride) (TAHQ), and 2,2′‐bis(trifluoromethyl)benzidine (TFMB) in GBL resulted in gelation in the initial reaction stage. The incorporation of a methyl group to TAHQ (M‐TAHQ) allowed polymerization with TFMB in GBL and led to a homogeneous poly(ester imide) (PEsI) precursor solution with a short pot life of 3 days, whereas a simple copolymerization approach using bulky/flexible comonomers to TAHQ/TFMB was less effective. PEsI precursors (PEsAAs) were prepared from TFMB, M‐TAHQ and a minor fraction of 4,4′‐(hexafluoroisopropylidene)diphthalic anhydride (6FDA) or a fluorene‐containing tetracarboxylic dianhydride. These PEsAA systems showed drastically improved GBL solution stability. In particular, the M‐TAHQ(80);6FDA(20)/TFMB copolymer system provided a PEsAA film with a very high light transmittance at 365 nm (>70%). A photosensitive film composed of this matrix resin and diazonaphthoquinone provided a clear positive‐tone pattern by development in a 2.38 wt% tetramethylammonium hydroxide aqueous solution at room temperature with a high dissolution contrast. The thermally cured PEsI film achieved a very high tensile modulus (>5 GPa) as the present target with other desirable properties, i.e. sufficient film flexibility, a relatively low coefficient of thermal expansion, a high Tg and low water absorption. The present materials can be promising candidates as novel buffer coat films in semiconductor applications. Copyright © 2011 Society of Chemical Industry
Keywords:polyimides  i‐line transparency  solubility  modulus  photosensitive materials
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号