首页 | 本学科首页   官方微博 | 高级检索  
     


Parallel Globally Consistent Normal Orientation of Raw Unorganized Point Clouds
Authors:J Jakob  C Buchenau  M Guthe
Abstract:A mandatory component for many point set algorithms is the availability of consistently oriented vertex‐normals (e.g. for surface reconstruction, feature detection, visualization). Previous orientation methods on meshes or raw point clouds do not consider a global context, are often based on unrealistic assumptions, or have extremely long computation times, making them unusable on real‐world data. We present a novel massively parallelized method to compute globally consistent oriented point normals for raw and unsorted point clouds. Built on the idea of graph‐based energy optimization, we create a complete kNN‐graph over the entire point cloud. A new weighted similarity criterion encodes the graph‐energy. To orient normals in a globally consistent way we perform a highly parallel greedy edge collapse, which merges similar parts of the graph and orients them consistently. We compare our method to current state‐of‐the‐art approaches and achieve speedups of up to two orders of magnitude. The achieved quality of normal orientation is on par or better than existing solutions, especially for real‐world noisy 3D scanned data.
Keywords:CCS Concepts    Computing methodologies →  Shape analysis    Theory of computation →  Computational geometry  Massively parallel algorithms
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号