首页 | 本学科首页   官方微博 | 高级检索  
     


Reflection and time-dependent computing: Experiences with the R2 architecture
Authors:Yasuaki Honda  Mario Tokoro
Affiliation:1. Sony Computer Science Laboratory Inc., 3-14-13, Higashi-Gotanda, Shinagawa-ku, 141, Tokyo, Japan
2. Keio University, 3-14-1, Hiyoshi, Kohoku-ku, 223, Yokohama, Japan
Abstract:In this paper we present an application of computational reflection in the programming oftime-dependent systems. A time-dependent system performs its tasks according to timing specifications specified within the system or imposed from outside the system. Reflective techniques can be applied to programming time-dependent systems because (1) some application programs require the introduction of a new language construct for specifying timing requirements and (2) different applications may require domain-specific scheduling algorithms. To allow a programmer to add or modify language constructs or scheduling algorithms, however, a clear reflective architecture and program interfaces must be provided. This paper proposes a concurrent object-based reflective architecture (R 2 architecture) for time-dependent computing. This architecture is based on anindividual reflection scheme and introduces new meta-level objects (real-time meta objects) that are responsible for time-dependent capabilities. An alarm-clock object and a scheduler object are introduced, and message protocols between them and real-time meta objects are defined. We implemented this architecture on ABCL/R2 and created the Sampled Sound Player program as an application. With this application we provided three different scheduler objects and measured the impact of different scheduling algorithms on sound playback. The measured results show that a scheduler with more complex computations at the meta level exhibited less scheduling overhead, thus was capable of better sound playback. The other example, Time-dependent Graceful Degradation Scheme, demonstrates the programming of functionality degradation triggered by failure to satisfy timing specifications.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号