首页 | 本学科首页   官方微博 | 高级检索  
     


Computational thermography: Numerical modeling of the thermal regimes of building structures
Authors:V L Dragun  L S Domorod  M I Rabetskii  S A Filatov  V A Pavlovtsev
Abstract:We consider numerical methods of simulating thermal regimes of building structures that make it possible to create optimum structures as regards power consumption by using more accurate calculations than those available in existing construction specifications and regulations. Possible means of reducing energy expenditures for formation of an optimum microclimate in living quarters are described.Notation R thermal resistance to heat transfer - lambda i thermal conductivity - c i heat capacity - gamma i moisture content - i number of a layer - S thermal inertia of the material - rgr density of the substance - ohgr frequency of harmonic vibrations - t time - Fo Fourier number - agr thermal diffusivity - Deltat time step - Deltax spatial step - Bi Biot number - h c coefficient of convective heat transfer - k thermal conductivity - T infin ambient temperature - T w wall temperature - Nu Nusselt number - Ra l Rayleigh number - Gr l Grashof number - Pr Prandtl number - g free fall acceleration - beta coefficient of thermal volumetric expansion of air - l characteristic length - ngr coefficient of kinematic viscosity of air - 
$$\bar T$$
determining temperature - lambda thermal conductivity of the material - q heat flux - s area of the heat transfer surface - rgr perimeter of the heat transfer surface - T infin free stream velocity - mgr air viscosity Academic Scientific Complex ldquoA. V. Luikov Heat and Mass Transfer Institute of the Academy of Sciences of Belarus,rdquo Minsk. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 66 No. 6, pp. 733–738, June, 1994.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号