首页 | 本学科首页   官方微博 | 高级检索  
     


Polarizationally Non-sensitive Pseudo-holographic Computer Reconstruction of Random Rough Surface
Authors:M Burova  J Burov
Affiliation:Department of Solid State Physics , Sofia University, Faculty of Physics , 5 James Bourchier blvd, Sofia, BG-1126, Bulgaria
Abstract:Abstract

The function, describing a profile of a random rough surface (RRS) is expanded in a Fourier series, i.e. the surface is considered as a composition of sinusoidal gratings. The total diffracted optical field from this RRS is a sum of the fields due to all harmonic gratings, since Kirchhoff's condition for ‘locally flat surface’ is realized for each harmonic grating at a given light wavelength and at an appropriate choice of the basic grating period. The registered s and p components of the diffracted (+1 diffraction orders of each harmonic gratings), incident and mixed optic fields are separated with an optical analyser. These fields are experimentally measured and from these values the phase and the amplitude of each grating are determined. The profile of the surface is reconstructed for s and p polarization of the light scattered field, when the electric vector of the incident light concludes an arbitrary angle with the incidence plane. The mean roughness is determined in both cases. It is shown, that both reconstructions of the profile and the determination of the mean roughness are not dependent on the polarization of the incident light. The separation of the s and p components is of great importance at the two-dimensional reconstruction, when independent of incident light polarization (s or p), the scattered optical field is always depolarized. In this case the profile of the two-dimensional surface can be easily reconstructed with s or p component of the mixing and diffracted fields.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号