首页 | 本学科首页   官方微博 | 高级检索  
     

基于子向量距离索引的高维图像特征匹配算法
引用本文:赵嵩,马荣华,曹海旺,杨恒. 基于子向量距离索引的高维图像特征匹配算法[J]. 计算机工程与应用, 2013, 49(2): 237-241,264
作者姓名:赵嵩  马荣华  曹海旺  杨恒
作者单位:1. 郑州航空工业管理学院,郑州,450015
2. 郑州铁路职业技术学院,郑州,450052
3. 西安应用光学研究所,西安,710065
基金项目:国家自然科学基金,河南省教育厅自然科学研究计划项目,航空科学基金项目
摘    要:图像局部不变特征已经成功地应用在计算机视觉当中的许多领域,而如何快速有效地匹配高维图像局部特征向量是解决这类问题的关键步骤。提出了一种新的基于子向量距离索引的高维特征向量匹配算法,将高维空间中最近邻搜索问题转化为一维索引值的查找和局部搜索问题,在保证较高的搜索精度的同时大大提高了搜索速度。大量的图像匹配和图像检索实验验证了该算法的有效性。

关 键 词:高维特征匹配  最近邻搜索  图像检索  子向量距离索引

High dimensional image feature matching based on sub-vector distance indexing
ZHAO Song , MA Ronghua , CAO Haiwang , YANG Heng. High dimensional image feature matching based on sub-vector distance indexing[J]. Computer Engineering and Applications, 2013, 49(2): 237-241,264
Authors:ZHAO Song    MA Ronghua    CAO Haiwang    YANG Heng
Affiliation:1.Zhengzhou Institute of Aeronautical Industry Management,Zhengzhou 450015,China 2.Zhengzhou Railway Vocational & Technical College,Zhengzhou 450052,China 3.Xi’an Institute of Applied Optics,Xi’an 710065,China
Abstract:Local invariant features have been widely applied in many computer vision applications and high-dimensional image feature matching is a core part of solving these problems.In this paper,it proposes a new indexing structure for the high-dimensional feature matching,which is based on the distance of the sub-vectors.The algorithm converts the feature vectors into one dimensional indexing value and only searches the features indexed by the same value in nearest neighbor searching process so that the searching speed can be greatly improved and high searching accuracy can be reached at the same time.Experimental results demonstrate the efficiency and effectiveness of the proposed methods in extensive image matching and image retrieval applications.
Keywords:high dimensional feature matching  nearest neighbor searching  image retrieve  indexing sub-vector distance
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号