首页 | 本学科首页   官方微博 | 高级检索  
     


Optimal design of infinite repetitive structures
Authors:M Ryvkin  M B Fuchs  B Nuller
Affiliation:(1) Department of Solid Mechanics, Materials and Structures, The Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, 69978 Tel Aviv, Israel;(2) Department of Mathematics, Academy of Wood Technology, 194018 St.-Petersburg, Russia
Abstract:An approach for designing optimal repetitive structures under arbitrary static loading is presented. It is shown that the analysis of such infinite structures can be reduced to the analysis of the repeating module under transformed loading and boundary conditions. Consequently, both the design parameters and the analysis variables constitute a relatively small set which facilitates the optimization process. The approach hinges on the representative cell method. It is based on formulating the analysis equations and the continuity conditions for a sequence of typical modules. Then, by means of the discrete Fourier transform this problem translates into a boundary value problem of a representative cell in transformed variables, which can be solved by any appropriate analytical or numerical method. The real structural response any-where in the structure is then obtained by the inverse transform. The sensitivities can also be calculated on the basis of the sensitivities of the representative cell. The method is illustrated by the design for minimum compliance with a volume constraint of an infinite plane truss. It is shown that by employing this analysis method within an optimal design scheme one can incorporate a reduced analysis problem in an intrinsically small design space.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号