首页 | 本学科首页   官方微博 | 高级检索  
     


Biodegradation and biocompatibility of a guided tissue regeneration barrier membrane formed from a liquid polymer material
Authors:BA Coonts  SL Whitman  M O'Donnell  AM Polson  G Bogle  S Garrett  DD Swanbom  JC Fulfs  PW Rodgers  GL Southard  RL Dunn
Affiliation:Atrix Laboratories, Inc., Fort Collins, Colorado 80525, USA.
Abstract:Biodegradable barrier films were made by coagulating a solution of poly(DL-lactide) in N-methyl-2-pyrrolidone on porous polyethylene pads wetted with saline solution. The semisolid films were cut into 10 x 10 mm barriers and implanted subcutaneously in rabbits. At monthly intervals, the polymer implant sites were compared histologically to those implanted with USP negative control plastic. The polymer films were retrieved from the surrounding tissue, dried, weighed, and the changes in molecular weight determined using gel permeation chromatography. The molecular weight of the polymer decreased at a relatively constant rate over 5 months; however, no significant mass loss occurred until 5 months postimplantation. Also, no distinct histological differences were noted between the polymer barrier and the control plastic sites until 6 months when histiocytes and multinucleated giant cells showed a modest increase around fragmented polymer films. Similar barrier films also were fitted over naturally occurring buccal dehiscence defects in beagle dogs and the tissue sites compared histologically at 6 months to sham-operated control sites. New bone and dense connective tissues closely approximated segments of the remaining polymer and demonstrated the biocompatibility of the biodegradable films. Histomorphometric analyses of treated sites compared to sham controls showed that the polymer barrier is effective in promoting bone and cementum regeneration in periodontal defects in dogs.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号