首页 | 本学科首页   官方微博 | 高级检索  
     


A continuation method for rigid‐cohesive fracture in a discontinuous Galerkin finite element setting
Abstract:An energy minimization formulation of initially rigid cohesive fracture is introduced within a discontinuous Galerkin finite element setting with Nitsche flux. The finite element discretization is directly applied to an energy functional, whose term representing the energy stored in the interfaces is nondifferentiable at the origin. Unlike finite element implementations of extrinsic cohesive models that do not operate directly on the energy potential, activation of interfaces happens automatically when a certain level of stress encoded in the interface potential is reached. Thus, numerical issues associated with an external activation criterion observed in the previous literature are effectively avoided. Use of the Nitsche flux avoids the introduction of Lagrange multipliers as additional unknowns. Implicit time stepping is performed using the Newmark scheme, for which a dynamic potential is developed to properly incorporate momentum. A continuation strategy is employed for the treatment of nondifferentiability and the resulting sequence of smooth nonconvex problems is solved using the trust region minimization algorithm. Robustness of the proposed method and its capabilities in modeling quasistatic and dynamic problems are shown through several numerical examples.
Keywords:cohesive fracture  continuation method  discontinuous Galerkin method  initially rigid  nondifferentiable energy minimization  trust region method
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号