首页 | 本学科首页   官方微博 | 高级检索  
     

基于PPCA-EWT的滚动轴承轻微故障诊断
引用本文:胡爱军,南冰,任永辉. 基于PPCA-EWT的滚动轴承轻微故障诊断[J]. 振动、测试与诊断, 2018, 38(2): 365-370
作者姓名:胡爱军  南冰  任永辉
作者单位:华北电力大学能源动力与机械工程学院
基金项目:国家自然科学基金资助项目(51475164,51675178)
摘    要:针对经验小波变换(empirical wavelet transform,简称EWT)在强背景噪声下对轴承的轻微故障特征提取不足的问题,提出了概率主成分分析(probabilistic principal component analysis,简称PPCA)结合EWT的滚动轴承轻微故障诊断方法。首先,对信号做PPCA预处理,提取信号主要故障特征成分,去除强背景噪声干扰;然后,采用EWT方法分解轴承故障信号,按相关系数-峭度准则选出故障特征较为明显的分量,并将所选分量重构故障信号;最后,对信号采取包络分析,提取出轴承故障特征。仿真和实验结果表明,该方法能够有效地诊断出轴承故障且效果优于对信号进行EWT包络分析。

关 键 词:滚动轴承;经验小波变换;概率主成分分析;故障诊断

Rolling Bearing Weak Fault Diagnosis Based on PPCA and EWT
HU Aijun,NAN Bing,REN Yonghui. Rolling Bearing Weak Fault Diagnosis Based on PPCA and EWT[J]. Journal of Vibration,Measurement & Diagnosis, 2018, 38(2): 365-370
Authors:HU Aijun  NAN Bing  REN Yonghui
Affiliation:(School of Energy, Power and Mechanical Engineering, North China Electric Power University Baoding, 071003, China)
Abstract:It is difficult for the empirical wavelet transform (EWT) to extract the fault feature of bearing weak fault in the strong noisy environment. In the light of this problem, a new rolling bearing weak fault diagnosis method based on the probabilistic principal component analysis (PPCA) and EWT is proposed. First, the raw signal is analyzed using PPCA to extract fault feature and restrain noise interference. Second, the signal is decomposed using EWT. The most qualified components are selected to reconstruct signals using the correlation coefficient-kurtosis criteria. Finally, the envelope spectrum is performed to extract fault features of the rolling bearing signals. The simulation and experimental data are analyzed using the proposed PPCA-EWT and EWT-based envelope analysis. The results show that the noise is eliminated and the fault feature is enhanced by the PPCA-EWT process. is the method is effective in the rolling bearing weak fault detection.
Keywords:rolling bearing   empirical wavelet transform   probabilistic principal component analysis   fault diagnosis
本文献已被 CNKI 等数据库收录!
点击此处可从《振动、测试与诊断》浏览原始摘要信息
点击此处可从《振动、测试与诊断》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号