首页 | 本学科首页   官方微博 | 高级检索  
     

基于自适应模糊神经网络的发动机故障诊断
引用本文:马继昌,司景萍,牛嘉骅,王二毛. 基于自适应模糊神经网络的发动机故障诊断[J]. 噪声与振动控制, 2015, 35(2): 165-169
作者姓名:马继昌  司景萍  牛嘉骅  王二毛
作者单位:( 内蒙古工业大学 能源与动力工程学院, 呼和浩特 010051 )
基金项目:内蒙古自然基金(2012MS0704);内蒙古高校科研基金重点(NJZZ11070)
摘    要:发动机是车辆的核心部件,及时有效地发现并排除故障,对降低维修费用,减少经济损失,增加发动机工作时的可靠性,避免事故发生具有重大的意义。以某型号发动机为研究对象,运用测试技术、信号处理、小波分析、神经网络和模糊控制理论,提出了自适应模糊神经网络发动机故障诊断。首先建立了发动机故障信号采集试验台,在试验台上人工模拟四种工况,通过加速度传感器采集正常工况和异常工况的振动信号。再利用小波理论对采集到的振动信号进行消噪处理,提高信噪比,并提取出故障信号的特征值,作为网络训练和测试的样本数据。用样本数据训练和检测自适应模糊神经网络,即对发动机故障进行模式识别。通过仿真分析,取得了很好的诊断效果;同时与传统的BP神经网络故障诊断方法进行对比,无论在诊断精度上还是学习速度上,模糊神经网络在故障诊断中更具有优势。

关 键 词:振动与波  小波分析  模糊理论  BP神经网络  故障诊断  
收稿时间:2014-09-24

Engine Fault Diagnosis Based on Adaptive Fuzzy Neural Network
MA Ji-chang;SI Ji-ping;NIU Jia-hua;WANG Er-mao. Engine Fault Diagnosis Based on Adaptive Fuzzy Neural Network[J]. Noise and Vibration Control, 2015, 35(2): 165-169
Authors:MA Ji-chang  SI Ji-ping  NIU Jia-hua  WANG Er-mao
Affiliation:MA Ji-chang;SI Ji-ping;NIU Jia-hua;WANG Er-mao;College of Encygy and Power Engineering, Inner Mongolia University of Technology;
Abstract:The engine is the core component of the vehicle, timely and effective manner to discover and troubleshooting, reduce maintenance costs, reduce economic losses, increase the reliability of the engine at work to avoid accidents have great significance. Taking a model engine for the study, with testing techniques, signal processing, analysis, neural networks and fuzzy control theory, and come out adaptive fuzzy neural network fault diagnosis engine.The paper established a fault signal acquisition engine test stand and four kinds of artificial conditions, the vibration signal acquisition normal operating conditions and abnormal operating conditions by the acceleration sensor, and then using wavelet theory collected vibration signal de-noising process, improve signal to noise ratio and extract the fault characteristic value of the signal sample data as the network training and testing. Fuzzy neural network training and testing using sample data adaptive, that is pattern recognition engine failure, through simulation, and achieved good diagnostic results. Compared with the traditional BP Neural Network diagnostic methods, both in learning speed or accuracy of the diagnosis, Fuzzy Neural Network has more advantages in fault diagnosis.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《噪声与振动控制》浏览原始摘要信息
点击此处可从《噪声与振动控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号