首页 | 本学科首页   官方微博 | 高级检索  
     


Vascular Inflammation and Dysfunction in Lupus-Prone Mice-IL-6 as Mediator of Disease Initiation
Authors:Paul Marczynski  Myriam Meineck  Ning Xia  Huige Li  Daniel Kraus  Wilfried Roth  Tamara Mckel  Simone Boedecker  Andreas Schwarting  Julia Weinmann-Menke
Affiliation:1.Department of Nephrology and Rheumatology, University Center of Autoimmunity, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (P.M.); (M.M.); (D.K.); (T.M.); (S.B.); (A.S.);2.Institute of Pharmacology, Johannes-Gutenberg University Mainz, 55131 Mainz, Germany; (N.X.); (H.L.);3.Institute of Pathology, Medical Center of the Johannes-Gutenberg University Mainz, 55131 Mainz, Germany;
Abstract:Background: Systemic lupus erythematosus (SLE) is a chronic inflammatory autoimmune disease and patients are under an increased risk for cardiovascular (CV) events and mortality. The increased CV risk for patients with SLE seems to be caused by a premature and accelerated atherosclerosis, attributable to lupus-specific risk factors (i.e., increased systemic inflammation, altered immune status), apart from traditional CV risk factors. To date, there is no established experimental model to explore the pathogenesis of this increased CV risk in SLE patients. Methods: Here we investigated whether MRL-Faslpr mice, which develop an SLE-like phenotype, may serve as a model to study lupus-mediated vascular disease. Therefore, MRL-Faslpr, MRL-++, and previously generated Il6−/− MRL-Faslpr mice were used to evaluate vascular changes and possible mechanisms of vascular dysfunction and damage. Results: Contrary to MRL-++ control mice, lupus-prone MRL-Faslpr mice exhibited a pronounced vascular and perivascular leukocytic infiltration in various organs; expression of pro-inflammatory cytokines in the aorta and kidney was augmented; and intima-media thickness of the aorta was increased. IL-6 deficiency reversed these changes and restored aortic relaxation. Conclusion: Our findings demonstrate that the MRL-Faslpr mouse model is an excellent tool to investigate vascular damage in SLE mice. Moreover, IL-6 promotes vascular inflammation and damage and could potentially be a therapeutic target for the treatment of accelerated arteriosclerosis in SLE.
Keywords:systemic lupus erythematosus  antibody  cardiovascular disease  macrophage  T Cells  Intima media thickness  cytokines
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号