首页 | 本学科首页   官方微博 | 高级检索  
     


Challenges and Strategies for Optimizing Corrosion and Biodegradation Stability of Biomedical Micro- and Nanoswimmers: A Review
Authors:Ehsan Rahimi  Roger Sanchis-Gual  Xiangzhong Chen  Amin Imani  Yaiza Gonzalez-Garcia  Edouard Asselin  Arjan Mol  Lorenzo Fedrizzi  Salvador Pané  Maria Lekka
Affiliation:1. Polytechnic Department of Engineering and Architecture, University of Udine, 33100 Udine, Italy;2. Multi-Scale Robotics Lab (MSRL), Institute of Robotics & Intelligent Systems (IRIS), ETH Zurich, 8092 Zurich, Switzerland;3. Department of Materials Engineering, The University of British Columbia, Vancouver, BC, V6T 1Z4 Canada;4. Delft University of Technology, Department of Materials Science and Engineering, Mekelweg 2, 2628 CD Delft, The Netherlands;5. CIDETEC, Basque Research and Technology Alliance (BRTA), Donostia, 20014 San Sebastián, Spain
Abstract:The last two decades have witnessed the emergence of micro- and nanoswimmers (MNSs). Researchers have invested significant efforts in engineering motile micro- and nanodevices to address current limitations in minimally invasive medicine. MNSs can move through complex fluid media by using chemical fuels or external energy sources such as magnetic fields, ultrasound, or light. Despite significant advancements in their locomotion and functionalities, the gradual deterioration of MNSs in human physiological media is often overlooked. Corrosion and biodegradation caused by chemical reactions with surrounding medium and the activity of biological agents can significantly affect their chemical stability and functional properties during their lifetime performance. It is therefore essential to understand the degradation mechanisms and factors that influence them to design ideal biomedical MNSs that are affordable, highly efficient, and sufficiently resistant to degradation (at least during their service time). This review summarizes recent studies that delve into the physicochemical characteristics and complex environmental factors affecting the corrosion and biodegradation of MNSs, with a focus on metal-based devices. Additionally, different strategies are discussed to enhance and/or optimize their stability. Conversely, controlled degradation of non-toxic MNSs can be highly advantageous for numerous biomedical applications, allowing for less invasive, safer, and more efficient treatments.
Keywords:biodegradation  biomedicine  corrosion  small-scale swimmers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号