首页 | 本学科首页   官方微博 | 高级检索  
     


Effect of oxygen vacancy in tungsten oxide on the photocatalytic activity for decomposition of organic materials in the gas phase
Affiliation:1. Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan;2. Toshiba Materials Co., LTD. 8, Shinsugita-Cho, Isogo-Ku, Yokohama 235-8522, Japan;3. School of Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan;1. Department of Electrical Engineering, Centro Universitário FEI, Av. Humberto de Alencar Castelo Branco, 3972, CEP 09850-901 São Bernardo do Campo, Brazil;2. Département des Composants Silicium – SCME/LCTE, CEA-LETI Minatec, 17 Rue des Martyrs, 38054 Grenoble, France
Abstract:The relationship between the oxygen vacancy of tungsten oxide and its ability to decompose organic materials under visible-light irradiation was investigated experimentally. In the field of rechargeable batteries, the highest charge-discharge rate is obtained when tungsten oxide is used as a negative electrode with an O/W ratio of 2.72. This result suggested that the number of oxygen vacancies in tungsten oxide affects the photocatalytic decomposition behavior of organic materials. Therefore, with the aim of increasing the photocatalytic activity of tungsten oxide to decompose organic materials, we attempted to clarify the role of the oxygen vacancy. WO3  x nanoparticles, including WO2.83 and WO2.72 nanoparticles, were fabricated by changing the annealing temperature in a 10% H2, 90% N2 atmosphere to generate different densities of oxygen vacancies. Tungsten oxide with O/W ratios of 2.83 and 2.72 exhibited no photocatalytic activity for the photodecomposition of organic materials. The maximum decomposition rate was obtained for stoichiometric WO3 (O/W = 3). The reason for the decrease or disappearance of the photodecomposition ability should originate in the increase in the number of electrons generated by the oxygen vacancies. These excess electrons promote the recombination reaction between electrons and holes in WO3  x, and hence reduce the lifetime of electron-hole pairs.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号