摘 要: | 点云配准是室内移动机器人位姿估计和环境构建的关键步骤,现有点云配准算法难以工作在低纹理场景中。为提高室内移动机器人环境适应能力,提出了一种改进三维正态分布变换(3D-NDT)点云配准算法。通过改进ORB特征提取算法,确保低纹理下的特征点提取;此外,为提高点云配准精度和效率,提出改进的3D-NDT算法快速获取高精度的点云配准矩阵。采用国际知名的公共数据集TUM作为评测数据,实验结果表明本文算法达到或优于现有主流点云配准算法的性能(均方根误差低于0. 02 m),相对传统3D-NDT算法配准时间缩短3倍以上;并且能工作在低纹理场景中。因此,改进的算法能提高室内移动机器人环境适应能力。
|