摘 要: | 根据催化裂化反应机理和多产异构烷烃的重油催化裂化(MIP)工艺的特点,结合大量的工业数据,开展了MIP工艺过程集总动力学模型与BP神经网络模型相结合提高目标产物预测精度的研究,建立了饱和分、芳香分、胶质+沥青质、柴油、汽油、液化气、干气和焦炭8个集总反应网络,结合龙格库塔法与遗传算法求得该集总模型的47个动力学参数。实验结果表明,所求得的动力学参数能较好地体现催化裂化反应规律;模型对产物分布的模拟计算相对偏差均小于5%,采用14-7-5结构的BP神经网络与集总模型相结合,可进一步提高模型对产物分布的预测精度,为重油催化裂化的模拟优化提供了一个新的方向。
|