首页 | 本学科首页   官方微博 | 高级检索  
     

集总动力学模型结合神经网络预测催化裂化产物收率
作者单位:;1.华东理工大学石油加工研究所
摘    要:根据催化裂化反应机理和多产异构烷烃的重油催化裂化(MIP)工艺的特点,结合大量的工业数据,开展了MIP工艺过程集总动力学模型与BP神经网络模型相结合提高目标产物预测精度的研究,建立了饱和分、芳香分、胶质+沥青质、柴油、汽油、液化气、干气和焦炭8个集总反应网络,结合龙格库塔法与遗传算法求得该集总模型的47个动力学参数。实验结果表明,所求得的动力学参数能较好地体现催化裂化反应规律;模型对产物分布的模拟计算相对偏差均小于5%,采用14-7-5结构的BP神经网络与集总模型相结合,可进一步提高模型对产物分布的预测精度,为重油催化裂化的模拟优化提供了一个新的方向。

关 键 词:催化裂化  MIP工艺  集总模型  神经网络

Prediction of the product yield from catalytic cracking process by lumped kinetic model combined with neural network
Abstract:
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号