首页 | 本学科首页   官方微博 | 高级检索  
     

基于深度神经网络的sEMG手势识别研究
作者姓名:张龙娇  曾晓勤
作者单位:河海大学 计算机与信息学院,南京,211100;河海大学 计算机与信息学院,南京,211100
摘    要:为了提高表面肌电信号(sEMG)手势识别算法的准确性,并解决人为提取大量特征具有局限性的问题,提出了一种基于深度神经网络的手势识别方法。将MYO臂环采集到的8通道sEMG数据,采用活动段分割的方法探测到有效动作;设计出一种融合卷积神经网络(CNN)和长短时记忆(LSTM)网络的神经网络;实验的结果表明手势识别准确率为91.6%,验证了提出的方案高效可行。

关 键 词:表面肌电信号  手势识别  MYO臂环  卷积神经网络
本文献已被 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号