首页 | 本学科首页   官方微博 | 高级检索  
     


CO Poisoning of Ethylene Hydrogenation over Pt Catalysts: A Comparison of Pt(111) Single Crystal and Pt Nanoparticle Activities
Authors:Jeff Grunes  Ji Zhu  Minchul Yang  Gabor A Somorjai
Affiliation:(1) Department of Chemistry and Division of Materials Science, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720, USA
Abstract:The ethylene hydrogenation reaction was studied on two platinum model catalyst systems in the presence of carbon monoxide to examine poisoning effects. The catalysts were a Pt(111) single crystal and lithographically fabricated platinum nanoparticles deposited on alumina. Gas chromatographic results for Pt(111) show that CO adsorption reduces the turnover rate from 101 to 10-2 molecules/Pt site/s at 413 K, and the activation energy for hydrogenation on the poisoned surface becomes 20.2 ± 0.1 kcal/mol. The activation energy for ethylene hydrogenation over Pt(111) in the absence of CO is 10.8 kcal/mol. The Pt nanoparticle system shows the same rate for the reaction as over Pt(111) in the absence of CO. When CO is adsorbed on the Pt nanoparticle array, the rate of the reaction is reduced from 102 to 100 nmol/s at 413 K. However, the activation energy remains largely unchanged. The Pt nanoparticles show an apparent activation energy for ethylene hydrogenation of 10.2 ± 0.2 kcal/mol in the absence of CO and 11.4 ± 0.6 kcal/mol on the CO-poisoned nanoparticle array. This is the first observation of a significant difference in catalytic behavior between Pt(111) and the Pt nanoparticle arrays. It is proposed that the active sites at the oxide--metal interface are responsible for the difference in activation energies for the hydrogenation reaction over the two model platinum catalysts.
Keywords:CO poisoning  ethylene hydrogenation over Pt  Pt/Al2O3 nanoparticles
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号