首页 | 本学科首页   官方微博 | 高级检索  
     


Calmodulin binding to myosin light chain kinase begins at substoichiometric Ca2+ concentrations: a small-angle scattering study of binding and conformational transitions
Authors:JK Krueger  NA Bishop  DK Blumenthal  G Zhi  K Beckingham  JT Stull  J Trewhella
Affiliation:Chemical Science and Technology Division, Los Alamos National Laboratory, New Mexico 87545, USA.
Abstract:We have used small-angle scattering to study the calcium dependence of the interactions between calmodulin (CaM) and skeletal muscle myosin light chain kinase (MLCK), as well as the conformations of the complexes that form. Scattering data were measured from equimolar mixtures of a functional MLCK and CaM or a mutated CaM (B12QCaM) incompetent to bind Ca2+ in its N-terminal domain, with increasing Ca2+ concentrations. To evaluate differences between CaM-enzyme versus CaM-peptide interactions, similar Ca2+ titration experiments were performed using synthetic peptides based on the CaM-binding sequence from MLCK (MLCK-I). Our data show there are different determinants for CaM binding the isolated peptide sequence compared to CaM binding to the same sequences within the enzyme. For example, binding of either CaM or B12QCaM to the MLCK-I peptide is observed even in the presence of EGTA, whereas binding of CaM to the enzyme requires Ca2+. The peptide studies also show that the conformational collapse of CaM requires both the N and C domains of CaM to be competent for Ca2+ binding as well as interactions with each end of MLCK-I, and it occurs at approximately 2 mol of Ca2+/mol of CaM. We show that CaM binding to the MLCK enzyme begins at substoichiometric concentrations of Ca2+ (< or = 2 mol of Ca2+/mol of CaM), but that the final compact structure of CaM with the enzyme requires saturating Ca2+. In addition, MLCK enzyme does bind to 2Ca2+ x B12QCaM, although this complex is more extended than the complex with native CaM. Our results support the hypothesis that CaM regulation of MLCK involves an initial binding step at less than saturating Ca2+ concentrations and a subsequent activation step at higher Ca2+ concentrations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号