首页 | 本学科首页   官方微博 | 高级检索  
     

基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测
引用本文:徐志明,文孝强,孙媛媛,孙灵芳. 基于最小二乘支持向量回归机的燃煤锅炉结渣特性预测[J]. 中国电机工程学报, 2009, 29(17): 8-13
作者姓名:徐志明  文孝强  孙媛媛  孙灵芳
作者单位:1.东北电力大学能源与机械工程学院
2.华北电力大学能源与动力工程学院
基金项目:国家重点基础研究发展规划项目(2007CB206904);吉林省科技发展计划项目(20070529)。
摘    要:对燃煤锅炉结渣特性建模预测并结合优化算法实现燃烧优化是降低锅炉结渣几率有效的方法。文中将煤的软化温度tST、硅铝比w(SiO2)/w(Al2O3)、碱酸比J、硅比G以及锅炉的无因次炉膛平均温度ft、无因次切圆直径fd等作为输入变量,以结渣程度作为输出,建立最小二乘支持向量回归机燃煤锅炉结渣预测模型。同时采用显微镜原理对惩罚参数g和核参数s进行寻优,快速有效地获得二者的最优组合。通过对5台锅炉结渣特性进行预测评判,结果表明此方法是合理可行的。同时依据本方法及面向对象的高级语言,开发了相应的预测评判系统。

关 键 词:最小二乘支持向量回归机  燃煤锅炉  动态指标  结渣  评判
收稿时间:2008-11-14
修稿时间:2008-12-31

State Prediction of Slagging on Coal-fired Boilers Based on Least Squares-support Vector Machine for Regression
XU Zhi-ming,WEN Xiao-qiang,SUN Yuan-yuan,SUN Ling-fang. State Prediction of Slagging on Coal-fired Boilers Based on Least Squares-support Vector Machine for Regression[J]. Proceedings of the CSEE, 2009, 29(17): 8-13
Authors:XU Zhi-ming  WEN Xiao-qiang  SUN Yuan-yuan  SUN Ling-fang
Affiliation:1. School of Energy Resources and Mechanical Engineering, Northeast Dianli University
2. School of Energy and Power Engineering, North China Electric Power University
Abstract:Building a model to predict the state of slag on coal-fired boilers is a good way to optimize the coal combustion and reduce the risk of boiler slag. This paper built the least squares-support vector machine for regression (LS- SVMR) to predict the state of slag on coal-fired boilers, in which there were six input vectors, which were softening temperature (tST), SiO2-Al2O3 ratio(w(SiO2)/w(Al2O3)), alkali- acid ratio(J), percentage of silicon content(G), the dimens- ionless average temperature furnace(ft) and the dimensionless inscribed circle diameter furnace(fd), and one output vectors, which was slagging degree. At the same time, to obtain the optimal combination of penalty parameter g and nuclear parameter s, the principle of microscope was used effectively. The feasibility of this method was proved by the result of predicting the state of slag on the five coal-fired boilers. Besides, the prediction system has been developed by object- oriented high-level language accordingly.
Keywords:least squares-support vector machine for regression  coal-fired boilers  dynamic norms  slagging  prediction
点击此处可从《中国电机工程学报》浏览原始摘要信息
点击此处可从《中国电机工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号