首页 | 本学科首页   官方微博 | 高级检索  
     


Cohesive and continuum damage models applied to fracture characterization of bonded joints
Authors:MFSF de Moura  JAG Chousal
Affiliation:Faculdade de Engenharia da Universidade do Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
Abstract:In this work, two different methods for simulating damage propagation are presented and applied to fracture characterization of bonded joints in pure modes I and II. The cohesive damage model is based on a special developed interface finite element including a linear softening damage process. In the continuum damage model the softening process is performed by including a characteristic length associated with a given Gauss point. The models were applied to the simulation of “double cantilever beam” (DCB) and “end notched flexure” (ENF) tests used to obtain the critical strain release rates in mode I and II of bonded joints. In mode I it was observed, under certain conditions, a good agreement between the results obtained by the two models with the reference value of critical strain energy release rate in mode I (GIc), which is an inputted parameter. However, in mode II some discrepancies on the obtained GIIc values were observed between the two models. These inaccuracies can be explained by the simplifying assumptions inherent to the cohesive model. Better results were achieved considering the crack equivalent concept.
Keywords:Damage models  Bonded joints  Fracture characterization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号