首页 | 本学科首页   官方微博 | 高级检索  
     


In situ observation of dynamic elastic modulus in polypyrrole actuators
Authors:Rachel Z. Pytel  Ian W. Hunter
Affiliation:a Department of Materials Science and Engineering, Massachusetts Institute of Technology, 6-113, 77 Massachusetts Ave, Cambridge, MA 02139, United States
b Department of Mechanical Engineering, Massachusetts Institute of Technology, 3-154, 77 Massachusetts Ave, Cambridge, MA 02139, United States
Abstract:Polypyrrole is a leading conducting polymer actuator, but the factors that influence its performance when actuated under load in devices (such as the polymer stiffness) are not yet fully understood. To this end, we have probed the dynamic elastic modulus of polypyrrole in situ during actuation in a variety of electrolytes. As part of this study, we demonstrate that the electroactive response in dilute 1-butyl-3-methylimidazolium hexafluorophosphate can be changed from cation- to anion-dominated by adjusting the applied potential waveform. We observe that when conservative electrochemical conditions are applied in order to avoid dual ion movement or significant transfer of neutral solvent, the stiffness is determined by level of counterion swelling. The elastic modulus decreases during the net influx of ions into the bulk polymer and increases as these ions are expelled, regardless of whether the electroactive response is cation- or anion-dominated or whether there is a neutral solvent present in the electrolyte. This effect is quite significant, and we have observed up to a 3× increase in elastic modulus upon actuation in neat 1-butyl-3-methylimidazolium hexafluorophosphate.
Keywords:Polypyrrole   Actuator   Conducting polymer
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号