首页 | 本学科首页   官方微博 | 高级检索  
     


Synthesis of sulfonated poly(arylene-co-naphthalimide)s as novel polymers for proton exchange membranes
Authors:Feng Zhang  Zhiming Cui  Lei Dai
Affiliation:a State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
b Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Abstract:A series of novel sulfonated poly(arylene-co-binaphthalimide)s (SPPIs) were successfully synthesized via Ni(0) catalytic coupling of sodium 3-(2,5-dichlorobenzoyl)benzenesulfonate and bis(chloronaphthalimide)s. Bis(chloronaphthalimide)s were conveniently prepared from 5-chloro-1,8-naphthalic anhydride and various diamines. Tough and transparent SPPI membranes were prepared and the electrolyte properties of the copolymers were intensively investigated as were the effects of different diamine structures on the copolymer characterisitics. The copolymer membrane Ia-80, with an ion exchange capacity (IEC) of 2.50 meq g−1, displayed a higher proton conductivity, i.e. 0.135 S cm−1 at 20 °C, as compared to Nafion 117 (0.09 S cm−1, 20 °C). The copolymer membrane Id-70, containing 3,3′-dimethyl-4,4′-methylenedianiline (DMMDA) units, exhibited excellent stability toward water and oxidation due to the introduction of hydrophobic methyl groups on the ortho-position of the imido bond in the copolymer. The mechanical property of Id-70 remained virtually unchanged after immersing membrane in pressured water at 140 °C for 24 h. Furthermore, the introduction of aliphatic segment a hexane-1,6-diamine (HDA) in copolymer led to a significant increase in proton conductivity and water uptake with increasing temperature; the proton conductivity of the Ic-70 membrane reached 0.212 S cm−1 at 80 °C, which was higher than Nafion 117 as well as of the membranes based on aromatic diamines at equivalent IEC values. Consequently, these materials proved to be promising as proton exchange membranes.
Keywords:Sulfonated copolyimides   Water stability   Proton exchange membrane
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号