首页 | 本学科首页   官方微博 | 高级检索  
     

基于特征的模型多目标优化分割算法
引用本文:王会凤,周雄辉,王婉. 基于特征的模型多目标优化分割算法[J]. 机械工程学报, 2008, 44(7): 241-247
作者姓名:王会凤  周雄辉  王婉
作者单位:上海交通大学国家模具CAD工程研究中心,上海,200030;上海交通大学国家模具CAD工程研究中心,上海,200030;上海交通大学国家模具CAD工程研究中心,上海,200030
摘    要:为了减少人为因素对分割结果的影响,提高计算精度和效率,保证分割方案的合理性,提出一种基于特征的模型分割算法,通过特征识别、可加工性分析,分割面获取及分割方案多目标优化4个主要步骤完成模型分割。由于分割过程中需要考虑多个目标函数,故将遗传算法多目标优化应用于分割过程中,通过对分割面和分割顺序的优化获得最优化分割结果,并以具体实例验证了算法的可行性。

关 键 词:模型分割制造  多目标优化  遗传算法  基于特征  可加工性分析

Feature-based Multi-objective Optimization Model Partitioning Scheme
WANG Huifeng,ZHOU Xionghui,WANG Wan. Feature-based Multi-objective Optimization Model Partitioning Scheme[J]. Chinese Journal of Mechanical Engineering, 2008, 44(7): 241-247
Authors:WANG Huifeng  ZHOU Xionghui  WANG Wan
Affiliation:National Die &Mold CAD Engineering Research Center, Shanghai Jiaotong University
Abstract:To get the automation of model partitioning, reduce the influence of human factors to partitioning results, increase the precision and efficiency of computation and ensure the rationality of partitioning scheme, a feature-based partitioning algorithm for complex model is proposed. Model partitioning schemes are gained through four main steps:feature recognition, manufacturability analysis, partitioning faces abstraction and multi-objective optimization of partitioning schemes. For there are many objective functions in partitioning process, multi-objective optimization of genetic algorithm is applied in algorithm. The optimal partitioning scheme is obtained by partitioning face and partitioning sequence optimization and the feasibility of this algorithm is verified by concrete examples.
Keywords:Feature-based  Genetic algorithm  Manufacturability analysis  Model partitioning manufacturing  Multi-objective optimization  
本文献已被 万方数据 等数据库收录!
点击此处可从《机械工程学报》浏览原始摘要信息
点击此处可从《机械工程学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号