首页 | 本学科首页   官方微博 | 高级检索  
     

前向代数神经网络的函数逼近理论及学习算法
引用本文:周永权. 前向代数神经网络的函数逼近理论及学习算法[J]. 计算机研究与发展, 2000, 37(3): 264-271
作者姓名:周永权
作者单位:广西民族学院数学与计算机科学系,南宁,530006
摘    要:文中对MP神经元模型进行了推广,定义了多项代数神经元、多项式代数神经网络,将多项式代数融入代数神经网络,分析了前向多项式代数神经网络函数逼近能力及理论依据,设计出了一类双输入单输出的前向4层多层式代数神经网络模型,由该模型构成的网络能够逼近于给定的二元多项式到预定的精度。给出了在P-adic意义下的多项式代数神经网络函数逼近整体学习算法,在学习的过程中,不存在局部极小,通过实例表明,该算法有效,最

关 键 词:多项式代数 函数逼近 学习算法 神经网络

ON FORWARD ALGEBRA NEURAL NETWORKS FUNCTION APPROXIMATION THEORY AND LEARNING ALGORTHMS
ZHOU Yong-Quan. ON FORWARD ALGEBRA NEURAL NETWORKS FUNCTION APPROXIMATION THEORY AND LEARNING ALGORTHMS[J]. Journal of Computer Research and Development, 2000, 37(3): 264-271
Authors:ZHOU Yong-Quan
Abstract:In this paper,the MP neurons are popularized, the concepts of polynomials algebra neurons and polynomials algebra neural networks are firstly proposed, and polynomials algebra neural networks are mixed together with algebra neural networks. An analysis is made of forward algebra neural networks function approximate capability and theory foundation, and a kind of double inputs and single output four layers forward algebra neurons are designed, which can approximate a given double variable polynomials function, satisfying the given precision. A learning algorithm of algebra neural networks under p-adic is designed. This method can escape local minimum during the learning process. Finally, examples illustrate its efficiency. It is pointed out that function link artificial neural networks can be accomplished by means of activation functions of neurons, thus providing a new theory and method in approximate symbol networks computation.
Keywords:polynomials algebra neurons   polynomials algebra neural networks   function approximate  learning algorithms
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号