首页 | 本学科首页   官方微博 | 高级检索  
     


Trajectory-based human action segmentation
Authors:Luís Santos  Kamrad Khoshhal  Jorge Dias
Affiliation:1. University of Coimbra, Portugal;2. Khalifa University, United Arab Emirates
Abstract:This paper proposes a sliding window approach, whose length and time shift are dynamically adaptable in order to improve model confidence, speed and segmentation accuracy in human action sequences. Activity recognition is the process of inferring an action class from a set of observations acquired by sensors. We address the temporal segmentation problem of body part trajectories in Cartesian Space in which features are generated using Discrete Fast Fourier Transform (DFFT) and Power Spectrum (PS). We pose this as an entropy minimization problem. Using entropy from the classifier output as a feedback parameter, we continuously adjust the two key parameters in a sliding window approach, to maximize the model confidence at every step. The proposed classifier is a Dynamic Bayesian Network (DBN) model where classes are estimated using Bayesian inference. We compare our approach with our previously developed fixed window method. Experiments show that our method accurately recognizes and segments activities, with improved model confidence and faster convergence times, exhibiting anticipatory capabilities. Our work demonstrates that entropy feedback mitigates variability problems, and our method is applicable in research areas where action segmentation and classification is used. A working demo source code is provided online for academical dissemination purposes, by requesting the authors.
Keywords:Motion segmentation  Classification framework  Signal processing  Motion variability  Adaptive sliding window
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号