首页 | 本学科首页   官方微博 | 高级检索  
     

基于加权证据理论的模糊信息融合目标识别
引用本文:刘兵,李辉,邢钢. 基于加权证据理论的模糊信息融合目标识别[J]. 计算机工程, 2012, 38(15): 172-174
作者姓名:刘兵  李辉  邢钢
作者单位:西北工业大学电子信息学院,西安,710072
基金项目:国家自然科学基金资助项目,中国航天科技集团公司航天科技创新基金资助项目,西北工业大学研究生创业种子基金资助项目
摘    要:在异类多传感器信息融合目标识别中,不同传感器对系统提供的证据等级不同。为此,提出一种模糊信息融合目标识别方法。将各证据按证据权进行转化,用Dempster-Shafer(D-S)证据理论进行合成,利用模糊数学模型对传感器测量值和数据库中的数据进行建模,根据证据距离得到各证据的相互支持度,进而获得传感器对系统提供信息量的权重。分析结果表明,该方法具有较高的精度和可靠性。

关 键 词:异类传感器  模糊信息  证据理论  信息融合  目标识别
收稿时间:2011-11-10

Fuzzy Information Fusion Target Recognition Based on Weighted Evidence Theory
LIU Bing , LI Hui , XING Gang. Fuzzy Information Fusion Target Recognition Based on Weighted Evidence Theory[J]. Computer Engineering, 2012, 38(15): 172-174
Authors:LIU Bing    LI Hui    XING Gang
Affiliation:(School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710072,China)
Abstract:Different sensors provide different evidence importance in a target recognizing system with heterogeneous multi sensor data fusion method.This paper proposes a fuzzy information fusion target recognition method.The evidences are transformed according to their weights before fused together using the Dempster Shafer(D S) evidence theory.The sensor measurements and data in the database are simulated by using the fuzzy mathematical model,and the mutual support degree among evidences is obtained from the evidence distances in order that the information weight of the evidence to the system is obtained.Analysis results show that this method has higher accuracy and reliability.
Keywords:heterogeneous sensor  fuzzy information  evidence theory  information fusion  target recognition
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号