首页 | 本学科首页   官方微博 | 高级检索  
     

气象灾害条件下电网应急物资预测方法
引用本文:柴庆发,孙守晶,邱吉福,陈明,魏振,丛伟. 气象灾害条件下电网应急物资预测方法[J]. 山东大学学报(工学版), 2021, 51(3): 76-83. DOI: 10.6040/j.issn.1672-3961.0.2020.527
作者姓名:柴庆发  孙守晶  邱吉福  陈明  魏振  丛伟
作者单位:电网智能化调度与控制教育部重点实验室(山东大学),山东 济南 250061;国网山东省电力公司青岛供电公司,山东青岛266002
基金项目:国家电网公司科技资助项目(5400-201999344A-0-0-00)
摘    要:为提高电网应急物资调配响应速度和电网抢修效率,提出一种案例推理与深度学习相结合的电网气象灾害条件下的应急物资预测方法.以气象信息、电网设备数据和地理环境数据为输入信息,利用案例推理方法确定预测模型输入、输出结构,并根据不同输入信息的特点进行处理和量化,利用深度置信网络完成案例适配,综合事故规模信息建立动态电网应急物资预...

关 键 词:气象灾害  特征因素  应急物资预测  案例推理  深度学习
收稿时间:2020-12-17

Prediction method of power grid emergency supplies under meteorological disasters
Qingfa CHAI,Shoujing SUN,Jifu QIU,Ming CHEN,Zhen WEI,Wei CONG. Prediction method of power grid emergency supplies under meteorological disasters[J]. Journal of Shandong University of Technology, 2021, 51(3): 76-83. DOI: 10.6040/j.issn.1672-3961.0.2020.527
Authors:Qingfa CHAI  Shoujing SUN  Jifu QIU  Ming CHEN  Zhen WEI  Wei CONG
Affiliation:1. Key Laboratory of Power System Intelligent Dispatch and Control of Ministry of Education (Shandong University), Jinan 250061, Shandong, China2. Qingdao Power Supply Company, State Grid Shandong Electric Power Company, Qingdao 266002, Shandong, China
Abstract:In order to improve the efficiency of grid emergency repairs, a method for predicting emergency supplies under the conditions of power grid meteorological disasters combining case-based reasoning, deep belief network and deep learning was proposed. Based on meteorological data, power grid maintenance data and geographic environment data, this method was used case-based reasoning to determine the appropriate input and output structure of the prediction model, and different methods was used to process and quantify according to the characteristics of disagreeing input factors. Deep belief networks were used to complete case adaptation, and integrate accident scale information was used to establish a dynamic power grid emergency supplies prediction model. The analysis results showed that the emergency material prediction method proposed in this paper could comprehensively analyze various characteristic factors, and combined the scale of the accident to establish the relationship between the emergency material demand of the power grid, and accurately predicted the material demand for the emergency response of the power grid under the weather disaster. and provided a scientific reference for emergency decision-making of power grids.
Keywords:meteorological disaster  characteristic factor  emergency materials prediction  case-based reasoning  deep learning  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《山东大学学报(工学版)》浏览原始摘要信息
点击此处可从《山东大学学报(工学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号