首页 | 本学科首页   官方微博 | 高级检索  
     

基于集合经验模态分解的脑电信号高阶张量特征提取
引用本文:付荣荣,杨阳,于宝,刘冲,张驰. 基于集合经验模态分解的脑电信号高阶张量特征提取[J]. 计量学报, 2021, 42(12): 1679-1685. DOI: 10.3969/j.issn.1000-1158.2021.12.20
作者姓名:付荣荣  杨阳  于宝  刘冲  张驰
作者单位:燕山大学电气工程学院,河北秦皇岛066004;东北大学机械工程与自动化学院,辽宁沈阳110819;大连理工大学生物医学工程学院,辽宁大连116024
基金项目:国家自然科学基金(62073282);河北省中央引导地方科技发展资金(206Z0301G);河北省自然科学基金(E2018203433)
摘    要:为了实现脑机接口系统需要有效的特征提取算法。针对二维主成分分析(2DPCA)的特征提取方法忽略脑电信号(EEG)频域特征的缺点和基于小波分解构建EEG高阶张量时小波参数难以确定的局限性,提出了基于集合经验模态分解(EEMD)构建高阶张量结合多线性主成分分析(MPCA)降维的特征提取方法。设计了3种不同特征提取方法的对照实验,并结合Fisher线性判别分析分类方法取得分类准确率。结果表明:新提出的方法相比基于小波分解构建高阶张量结合MPCA进行降维和2DPCA的特征提取方法,平均识别准确率分别提高4.75%和2.6%,且识别准确率的方差分别减小72.69%和23.86%。该方法在提高单次运动想象脑电信号识别准确率的同时还具有更好的适用性,为实现运动想象脑电信号解码奠定了基础。

关 键 词:计量学  脑电信号  集合经验模态分解  多线性主成分分析  脑机接口  特征提取
收稿时间:2020-11-18

Feature Extraction of EEG High Order Tensor Based on EEMD
FU Rong-rong,YANG Yang,YU Bao,LIU Chong,ZHANG Chi. Feature Extraction of EEG High Order Tensor Based on EEMD[J]. Acta Metrologica Sinica, 2021, 42(12): 1679-1685. DOI: 10.3969/j.issn.1000-1158.2021.12.20
Authors:FU Rong-rong  YANG Yang  YU Bao  LIU Chong  ZHANG Chi
Affiliation:1. School of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2. College of Mechanical Engineering and Automation, Northeastern University, Shenyang, Liaoning 110819,China
3. School of Biomedical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
Abstract:In view of the shortcomings of 2D principal component analysis (2DPCA)which ignores the frequency domain characteristics of electroencephalography (EEG) and the limitation that wavelet parameters are difficult to determine when constructing EEG high-order tensor based on wavelet decomposition, a feature extraction method based on ensemble empirical mode decomposition (EEMD)and multi linear principal component analysis (MPCA) is proposed. The contrast experiments of three different feature extraction methods are designed, and the classification accuracy is obtained by combining Fisher linear discriminant analysis classification method. The results show that compared with the feature extraction method of constructing high-order tensor based on wavelet decomposition combined with MPCA for dimensionality reduction and 2DPCA, the average recognition accuracy is improved by 4.75% and 2.6% respectively, and the variance of recognition accuracy is reduced by 72.69% and 23.86% respectively. The new feature extraction method not only improves the recognition accuracy of single motor imagery EEG signal, but also has better applicability, which lays the foundation for the realization of motor imagery EEG signal decoding.
Keywords:metrology,EEG  EEMD,MPCA,brain computer interface,feature extraction,
本文献已被 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号