首页 | 本学科首页   官方微博 | 高级检索  
     

重载并联六维力传感器及静态标定
引用本文:蔡大军,姚建涛,李颖康,易旺民,许允斗,赵永生. 重载并联六维力传感器及静态标定[J]. 计量学报, 2021, 42(8): 1026-1033. DOI: 10.3969/j.issn.1000-1158.2021.08.08
作者姓名:蔡大军  姚建涛  李颖康  易旺民  许允斗  赵永生
作者单位:燕山大学河北省并联机器人与机电系统实验室,河北秦皇岛066004;燕山大学工程训练中心,河北秦皇岛066004;燕山大学河北省并联机器人与机电系统实验室,河北秦皇岛066004;燕山大学先进锻压成形技术与科学教育部重点实验室,河北秦皇岛066004;燕山大学河北省并联机器人与机电系统实验室,河北秦皇岛066004;北京卫星环境工程研究所,北京100094
基金项目:国家自然科学基金(51675459,U2037202);河北省高校百名优秀创新人才支持计划(SLRC2019039);河北省省级科技计划国际科技合作基地建设专项(19391825D)
摘    要:针对传感器重载小尺寸需求,提出一种具有混合分支的重载并联六维力传感器,分析了其结构特点和测量原理。搭建了重载并联六维力传感器标定系统,为改善维间耦合及制造误差等对测量精度产生的影响,从标定算法及模型优化方面对其进行了研究。分别利用最小二乘法和BP神经网络算法对加载实验数据进行了处理,分析结果表明BP神经网络算法要明显优于最小二乘法,并通过数据随机分组测试验证了结果的正确性。基于BP神经网络,提出了一种基于人工鱼群算法的BP神经网络算法,并采用优化后的BP神经网络标定算法对实验数据进行了计算分析,结果表明优化后的BP神经网络计算结果较好且稳定,不易陷入局部极值。

关 键 词:计量学  六维力传感器  轮辐  重载  标定实验  混合分支
收稿时间:2019-12-10

Parallel Six-Axis Force Sensor with Heavy-load Capacity and Static Calibration
CAI Da-jun,YAO Jian-tao,LI Ying-kang,YI Wang-min,XU Yun-dou,ZHAO Yong-sheng. Parallel Six-Axis Force Sensor with Heavy-load Capacity and Static Calibration[J]. Acta Metrologica Sinica, 2021, 42(8): 1026-1033. DOI: 10.3969/j.issn.1000-1158.2021.08.08
Authors:CAI Da-jun  YAO Jian-tao  LI Ying-kang  YI Wang-min  XU Yun-dou  ZHAO Yong-sheng
Affiliation:1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao, Hebei 066004, China
2. Key Laboratory of Advanced Forging & Stamping Technology and Science, Ministry of Education of China, Yanshan University, Qinhuangdao,Hebei 066004, China
3. Engineering Training Center of Yanshan University, Qinhuangdao, Hebei 066004, China
4.Beijing Institute of Spacecraft Environment Engineering, Beijing 100094
Abstract:Aim at the requirements of the sensor on heavy load and small size, a hybrid branch parallel six-axis force with havey-load capacity is proposed, the structural characteristics and measuring mechanism are also explained. The calibration system of six-axis force sensor is built, and in order to improve the effect of dimensional coupling and manufacturing error on the measurement accuracy of the sensor, the model optimization of calibration algorithm is studied. The least square method and BP neural network calibration algorithm are respectively used to calibration analyze the loading experimental data, the results show that the BP neural network algorithm is better than the least square method, and the correctness of analysis results is proved by the grouping test of random data. Based on the BP neural network, a BP neural network algorithm based on artificial fish swarm algorithm is proposed, and the calibration data is calculated and analyzed by using the optimized BP neural network algorithm, the results show that the BP neural network algorithm based on artificial fish swarm algorithm is more stable and difficult to fall into local extremum.
Keywords:metrology  six-axis force sensor  spoke  havey-load  calibration experiment  hybrid branch  
本文献已被 万方数据 等数据库收录!
点击此处可从《计量学报》浏览原始摘要信息
点击此处可从《计量学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号