首页 | 本学科首页   官方微博 | 高级检索  
     


Modeling subsurface deformation induced by machining of Inconel 718
Authors:M. Agmell  A. Ahadi  J. M. Zhou  R. L. Peng  V. Bushlya  J.-E. Ståhl
Affiliation:1. Department of Mechanical Engineering, Lund University, Lund, Swedenmathias.agmell@iprod.lth.se.;3. Department of Mechanical Engineering, Lund University, Lund, Sweden;4. Department of Management and Engineering, Link?ping University, Link?ping, Sweden
Abstract:Traditionally, the development and optimization of the machining process with regards to the subsurface deformation are done through experimental method which is often expensive and time consuming. This article presents the development of a finite element model based on an updated Lagrangian formulation. The numerical model is able to predict the depth of subsurface deformation induced in the high- speed machining of Inconel 718 by use of a whisker-reinforced ceramic tool. The effect that the different cutting parameters and tool microgeometries has on subsurface deformation will be investigated both numerically and experimentally. This research article also addresses the temperature distribution in the workpiece and the connection it could have on the wear of the cutting tool. The correlation of the numerical and experimental investigations for the subsurface deformation has been measured by the use of the coefficient of determination, R2. This confirms that the finite element model developed here is able to simulate this type of machining process with sufficient accuracy.
Keywords:FEM  Inconel 718  machining  subsurface deformation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号