首页 | 本学科首页   官方微博 | 高级检索  
     

结合MFCC分析和仿生模式识别的语音识别研究
引用本文:王宪保,陈勇,汤丽平. 结合MFCC分析和仿生模式识别的语音识别研究[J]. 计算机工程与应用, 2011, 47(12): 20-22. DOI: 10.3778/j.issn.1002-8331.2011.12.006
作者姓名:王宪保  陈勇  汤丽平
作者单位:1.浙江工业大学 信息工程学院,杭州 310023 2.宁波市委党校,浙江 宁波 315010
基金项目:国家自然科学基金,浙江省教育厅科研项目
摘    要:提出了一种基于MFCC系数分析和仿生模式识别的语音识别方法,该方法对训练样本MFCC相同分量在各类语音间距离进行了分析,并通过与传统选取方法的比较实验,说明在小词汇量的语音识别中,选取合适的MFCC系数,不仅能减小计算量,正确识别率也会得到一定程度的提高。运用仿生模式识别理论中同类样本连续的观点,通过在特征空间中对训练样本进行有效的覆盖,大大提高了识别结果。

关 键 词:仿生模式识别  语音识别  Mel频率倒谱系数(MFCC)  
修稿时间: 

Speech recognition research based on MFCC analysis and biomimetic pattern recognition
WANG Xianbao,CHEN Yong,TANG Liping. Speech recognition research based on MFCC analysis and biomimetic pattern recognition[J]. Computer Engineering and Applications, 2011, 47(12): 20-22. DOI: 10.3778/j.issn.1002-8331.2011.12.006
Authors:WANG Xianbao  CHEN Yong  TANG Liping
Affiliation:1.College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China 2.Ningbo Party Institute of CPC,Ningbo,Zhejiang 315010,China
Abstract:A speech recognition method is proposed based on MFCC analysis and Biomimetic Pattern Recognition(BPR).It analyzes the distances among different samples kinds about same MFCC component and selects right coefficients,the comparative experiments are conducted with conditional method.The results show that, in the condition of small vocabulary, the calculated efficiency and recognition rates are improved.Based on BPR continuous theory, it finds the optimal covering of sample features in the same class,the recognition result is improved greatly.
Keywords:biomimetic pattern recognition  speech recognition  Mel Frequency Cepstrum Coefficient(MFCC)
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号