首页 | 本学科首页   官方微博 | 高级检索  
     


Bionic Quadruped Robot Dynamic Gait Control Strategy Based on Twenty Degrees of Freedom
Dawei Gong, Peng Wang, Shuangyu Zhao, Li Du and Yu Duan, "Bionic Quadruped Robot Dynamic Gait Control Strategy Based on Twenty Degrees of Freedom," IEEE/CAA J. Autom. Sinica, vol. 5, no. 1, pp. 382-388, Jan. 2018. doi: 10.1109/JAS.2017.7510790
Authors:Dawei Gong  Peng Wang  Shuangyu Zhao  Li Du  Yu Duan
Affiliation:University of Electronic Science and Technology, Chengdu 611731, China
Abstract:Quadruped robot dynamic gaits have much more advantages than static gaits on speed and efficiency, however high speed and efficiency calls for more complex mechanical structure and complicated control algorithm. It becomes even more challenging when the robot has more degrees of freedom. As a result, most of the present researches focused on simple robot, while the researches on dynamic gaits for complex robot with more degrees of freedom are relatively limited. The paper is focusing on the dynamic gaits control for complex robot with twenty degrees of freedom for the first time. Firstly, we build a relatively complete 3D model for quadruped robot based on spring loaded inverted pendulum (SLIP) model, analyze the inverse kinematics of the model, plan the trajectory of the swing foot and analyze the hydraulic drive. Secondly, we promote the control algorithm of one-legged to the quadruped robot based on the virtual leg and plan the state variables of pace gait and bound gait. Lastly, we realize the above two kinds of dynamic gaits in ADAMS-MATLAB joint simulation platform which testify the validity of above method. 
Keywords:Degree of freedom   dynamic gait   foot trajectory   quadruped robot   spring loaded inverted pendulum (SLIP)
点击此处可从《IEEE/CAA Journal of Automatica Sinica》浏览原始摘要信息
点击此处可从《IEEE/CAA Journal of Automatica Sinica》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号