首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯融合的土壤含水量估计
引用本文:谭龙飞,童玲,陈彦. 基于贝叶斯融合的土壤含水量估计[J]. 电子科技大学学报(自然科学版), 2018, 47(4): 539-544. DOI: 10.3969/j.issn.1001-0548.2018.04.011
作者姓名:谭龙飞  童玲  陈彦
作者单位:1.公安部四川消防研究所 成都 610036
基金项目:国家自然科学基金41571333
摘    要:提出了一种基于贝叶斯融合的土壤含水量估计方法。该方法首先利用散射计与辐射计协同试验数据分别测量后向散射系数和亮温,并利用主被动模型提取农作物下垫面土壤含水量;然后利用贝叶斯融合算法将主被动反演结果进行融合,在农作物完整生长期,融合后土壤含水量与真实值相比,平均平方误差(MSE)小于3.56、平均绝对差值(MAD)小于1.36、平均相对误差(MRE)小于13.92%,同时分级贝叶斯与经典贝叶斯同真实土壤含水量的决定系数为0.77和0.60,证明基于贝叶斯理论的融合算法能够在整个生长期土壤含水量估计优于单一传感器。

关 键 词:主被动传感器   贝叶斯融合   SAR   土壤含水量
收稿时间:2017-03-21

Estimation of Soil Moisture Based on Bayesian Assimilation
Affiliation:1.Sichuan Fire Research Institute of Ministry of Public Security Chengdu 6100362.School of Automation Engineering, University of Electronic Science and Technology of China Chengdu 611731
Abstract:This paper presents an estimation of soil moisture based on Bayesian assimilation. Firstly, the backscattering coefficient and brightness temperature are measured by scatterometer and radiometer in the joint experiment. Then the Bayesian assimilation is utilized for the results from active and passive retrieval models. The assimilative results of the mean square error (MSE), mean absolute deviation (MAD) and mean relative error (MRE) are 3.56, 1.36, and 13.92% smaller than real value, respectively. Moreover, the coefficient of determination result of hierarchical Bayesian (HB) and classic Bayesian (CB) are 0.77 and 0.60, respectively, which prove that the Bayesian assimilation results are better than inverse model which based on single sensors during the growth season.
Keywords:
点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号