首页 | 本学科首页   官方微博 | 高级检索  
     

小波变换和菲涅耳变换的多彩色图像加密
引用本文:曾健清,王君,陈叶,刘琦.小波变换和菲涅耳变换的多彩色图像加密[J].激光技术,2018,42(6):733-738.
作者姓名:曾健清  王君  陈叶  刘琦
作者单位:四川大学 电子信息学院, 成都 610065
摘    要:为了解决多彩色图像加密后,解密图像质量不佳、数据量大以及传输时速率慢的问题,采用了一种基于小波变换和菲涅耳变换的多彩色图像加密方法,加密过程中,利用小波变换的多级分解特性提取每幅彩色图像的低频分量,将低频分量分别重组为三元组图像(R,G和B),并且依次将三元组图像(R,G和B)通过菲涅耳域中的衍射加密系统,对这3个三元组图像进一步加密,从而实现了多彩色图像的加密。结果表明,该方法不仅可以高质量地恢复原始彩色图像,而且可以同时对4幅彩色图像进行加密,提高了加密彩色图像的容量;原始图像经过小波变换,其数据量压缩到原来的1/4,有利于数据的传输和存储。该算法能够有效地同时对多幅色彩图像进行压缩和加密,不仅提高了解密图像的质量,并且具有较高的密钥敏感度和较好的鲁棒性。

关 键 词:信息光学    多彩色图像压缩加密    离散小波变换    菲涅耳变换
收稿时间:2018-01-24

Multiple-color-image compression and encryption by using discrete wavelet transform in Fresnel transform domain
Abstract:In order to solve the problems of the low quality of image, the large amount of data and the slow rate of transmission, an optical compression and encryption method of multiple-color images by using discrete wavelet transform in Fresnel transform domain had been proposed. In the process of encryption, the low-frequency components of each color image were extracted by using the multilevel decomposition characteristics of wavelet transform, and the low frequency components were reorganized to triplet images (R, G and B), respectively. And the triplet images (R, G and B) were sequentially encrypted through the diffraction encryption system in the Fresnel domain. After triplet images were further encrypted, the encryption of multi-color images was realized. The results show that, the method can not only reconstruct the original color image with high quality, but also encrypt 4 color-images at the same time, which increases the capacity of the encrypted color image. The data volume of the encryption is compressed 1/4 after wavelet transform, which is beneficial to the transmission and storage of the data. The algorithm can effectively compress and encrypt multiple-color images at the same time. It not only improves the quality of the decrypted image, but also has high key sensitivity and good robustness.
Keywords:
点击此处可从《激光技术》浏览原始摘要信息
点击此处可从《激光技术》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号