首页 | 本学科首页   官方微博 | 高级检索  
     

智能交通信息物理融合云控制系统
引用本文:夏元清, 闫策, 王笑京, 宋向辉. 智能交通信息物理融合云控制系统. 自动化学报, 2019, 45(1): 132-142. doi: 10.16383/j.aas.c180370
作者姓名:夏元清  闫策  王笑京  宋向辉
作者单位:1.北京理工大学自动化学院复杂系统智能控制与决策国家重点实验室 北京 100081;;2.交通运输部公路科学研究院 北京 100082
基金项目:国家自然科学基金创新研究群体基金61621063国家自然科学基金61803033北京市自然科学基金Z170039北京市自然科学基金4161001国家重点研发计划2018YFB1003700国家自然科学基金61836001国家自然科学基金国际合作交流项目61720106010
摘    要:针对现代智能交通信息物理融合路网建设中的对象种类复杂、采集数据量大、传输及计算需求高以及实时调度控制能力弱等问题,基于云控制系统理论,以现代智能交通控制网络为研究对象,设计了智能交通信息物理融合云控制系统方案,包括智能交通边缘控制技术和智能交通网络虚拟化技术.基于智能交通流大数据,在云控制管理中心服务器上利用深度学习和超限学习机等智能学习方法对采集的交通流数据进行训练预测计算,能够预测城市道路的短时交通流和拥堵状况.进一步在云端利用智能优化调度算法得到实时的交通流调控策略,用于解决拥堵路段交通流分配难题,提高智能交通控制系统动态运行性能.仿真结果表明了本文方法的有效性.

关 键 词:智能交通云控制系统   深度学习   超限学习   信息物理融合系统
收稿时间:2018-06-01

Intelligent Transportation Cyber-physical Cloud Control Systems
XIA Yuan-Qing, YAN Ce, WANG Xiao-Jing, SONG Xiang-Hui. Intelligent Transportation Cyber-physical Cloud Control Systems. ACTA AUTOMATICA SINICA, 2019, 45(1): 132-142. doi: 10.16383/j.aas.c180370
Authors:XIA Yuan-Qing  YAN Ce  WANG Xiao-Jing  SONG Xiang-Hui
Affiliation:1. School of Automation, Key Laboratory of Intelligent Control and Decision of Complex Systems, Beijing Institute of Technology, Beijing 100081;;2. Research Institute of Highway Ministry of Transport, Beijing 100082
Abstract:Based on the theory of cloud control systems, an intelligent transportation cyber-physical cloud control system is designed due to the problems of complex objects, big data, high demand for transmission and calculation and poor real-time control ability in the modern intelligent transportation cyber-physical network. It includes intelligent transportation edge control technology and intelligent transportation network virtualization technology. Based on the big data of intelligent traffic flow, two intelligent learning methods, deep learning and extreme learning machine, are used to train and predict the traffic flow data on the servers of the cloud control management center. The short time traffic flow and the congestion of roads are predicted accurately. Then the real-time traffic flow control strategy is obtained by intelligent optimization scheduling algorithm in the cloud. The problem of traffic flow distribution in congested roads is solved and the dynamic performance of intelligent transportation control systems can be improved. The simulation results show the effectiveness of the proposed method.
Keywords:Intelligent transportation cloud control systems  deep learning  extreme learning machine  cyber-physical systems
本文献已被 维普 等数据库收录!
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号