首页 | 本学科首页   官方微博 | 高级检索  
     

基于多元变量泰勒级数展开模型的定位算法
引用本文:夏斌,刘承鹏,孙文珠,李彩虹. 基于多元变量泰勒级数展开模型的定位算法[J]. 电子科技大学学报(自然科学版), 2016, 45(6): 888-892. DOI: 10.3969/j.issn.1001-0548.2016.06.002
作者姓名:夏斌  刘承鹏  孙文珠  李彩虹
作者单位:山东理工大学计算机学院 山东 淄博 255049
基金项目:国家自然科学基金61473179山东省高校科技计划项目J11LG24
摘    要:传统Taylor级数展开模型只考虑未知节点和锚节点之间的距离,没有考虑未知节点之间的距离,定位信息不够全面,从而导致定位精度不高。为了进一步提高定位精度,该文提出了一种新的基于多元变量Taylor级数展开模型的定位算法。首先考虑未知节点之间的距离信息,建立新的基于多元变量Taylor级数展开的定位模型。然后,在对新的定位模型求解过程中,采用粒子群算法对未知节点进行定位,获得其位置的初始值。再根据加权最小二乘法求出新模型的解,作为未知节点的估计位置。最后,为评价该算法的性能,对定位结果的克拉美罗界(CRLB)进行推导。仿真结果表明基于多元变量Taylor级数展开模型的定位精度更高,定位误差接近CRLB。

关 键 词:物联网   多元变量泰勒级数展开   粒子群算法   定位模型
收稿时间:2015-05-27

Localization Algorithm Based on Multivariable Taylor Series Expansion Model
Affiliation:School of Computer Science and Technology, Shandong University of Technology Zibo Shandong 255049
Abstract:Conventional Taylor series expansion model only considers the distances between unknown nodes and anchor nodes, without considering the distances between unknown nodes. As a result, the location information is not comprehensive enough to result in lower positioning accuracy. Thus, a novel localization algorithm based on multivariable Taylor series expansion model is proposed to further enhance positioning accuracy. Firstly, the new positioning model which considers the distances between unknown nodes in multivariable Taylor series expansion is established. In the process of model solution, the particle swarm algorithm is used to obtain the estimated position values of the unknown nodes. Then, the optimal position values are obtained by the weighted least squares method. Finally, the Cramer-Rao lower bound (CRLB) of the positioning result is derived to evaluate the performance of the proposed algorithm. Simulation results demonstrate that the proposed algorithm obtains a higher positioning accuracy, and its positioning error is very close to the CRLB.
Keywords:
点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息
点击此处可从《电子科技大学学报(自然科学版)》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号