首页 | 本学科首页   官方微博 | 高级检索  
     

轮手一体机器人能量次优重构规划方法
引用本文:胡亚南, 马书根, 李斌, 王明辉, 王越超. 轮手一体机器人能量次优重构规划方法. 自动化学报, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752
作者姓名:胡亚南  马书根  李斌  王明辉  王越超
作者单位:1.中国科学院沈阳自动化研究所机器人学国家重点实验室 沈阳 110016 中国;;2.中国科学院大学 北京 100049 中国;;3.日本立命馆大学理工学部机器人学系 滋贺 525-8577 日本
基金项目:国家自然科学基金61473283
摘    要:模块化机器人的重构规划中,由于各模块的目标分配与其轨迹规划之间的耦合关系导致组合爆炸问题.本文提出一种基于简化模型的能量次优规划方法,将重构规划问题转化为最优控制问题,实现目标分配与轨迹规划的解耦.通过求解由Hamilton-Jacobi-Bellman(HJB)方程描述的最优控制问题,得到简化模型的值函数和最优轨迹.各模块的运动目标由值函数的吸引域决定.通过在最优轨迹附近的次优区域内搜索得到实际运动轨迹,提高了搜索效率.仿真实验结果表明,该方法能够选择合适的模块组合,并能在障碍物环境中生成满足机器人动力学约束的运动轨迹.

关 键 词:模块化机器人   重构规划   模型简化   最优控制
收稿时间:2015-11-12

An Energy Suboptimal Reconfiguration Planning Approach to Wheel-manipulator Robots
HU Ya-Nan, MA Shu-Gen, LI Bin, WANG Ming-Hui, WANG Yue-Chao. An Energy Suboptimal Reconfiguration Planning Approach to Wheel-manipulator Robots. ACTA AUTOMATICA SINICA, 2017, 43(8): 1358-1369. doi: 10.16383/j.aas.2017.c150752
Authors:HU Ya-Nan  MA Shu-Gen  LI Bin  WANG Ming-Hui  WANG Yue-Chao
Affiliation:1. State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China;;2. University of Chinese Academy of Sciences, Beijing 100049, China;;3. Department of Robotics, Ritsumeikan University, Shiga-ken 525-8577, Japan
Abstract:In reconfiguration planning of modular robots, coupling between goal assignment for individual modules and their trajectory planning leads to the combinatorial explosion problem. This paper proposes an energy suboptimal planning approach based on a simplified model. The problem of reconfiguration planning is transformed into an optimal control problem, which decouples goal assignment and trajectory planning. By solving the optimal control problem described by the Hamilton-Jacobi-Bellman (HJB) equation, a value function and optimal trajectories of the simplified model are derived. Respective goals of the modules are determined by attraction regions of the value function. Actual trajectories are obtained by searching in suboptimal regions that locate in the neighborhood of optimal trajectories of the simplified model. Simulation results show that the proposed approach can select a proper set of modules, and that generated trajectories can satisfy the dynamic constraint of the robot in an environment with obstacles.
Keywords:Modular robots  reconfiguration planning  model reduction  optimal control
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号