基于深度学习的行人重识别研究进展 |
| |
引用本文: | 罗浩, 姜伟, 范星, 张思朋. 基于深度学习的行人重识别研究进展. 自动化学报, 2019, 45(11): 2032-2049. doi: 10.16383/j.aas.c180154 |
| |
作者姓名: | 罗浩 姜伟 范星 张思朋 |
| |
作者单位: | 1.浙江大学智能系统与控制研究所 杭州 310027 |
| |
基金项目: | 浙江省基础公益研究计划项目LGF18F030002国家自然科学基金61633019国家自然科学基金61375049 |
| |
摘 要: |  行人重识别是计算机视觉领域近年来非常热的一个研究课题,可以被视为图像检索的一个子问题,其目标是给定一个监控行人图像检索跨设备下的该行人图像.传统的方法依赖手工特征,不能适应数据量很大的复杂环境.近年来随着深度学习的发展,大量基于深度学习的行人重识别方法被提出. 本文先简单介绍了该问题的定义及传统方法的局限,并列举了一些适用于深度学习方法的行人重识别数据集.此外我们详细地总结了一些比较典型的基于深度学习的行人重识别方法,并比较了部分算法在Market1501数据集上的性能表现.最后我们对该问题未来的研究方向做了一个展望.

|
关 键 词: | 行人重识别 深度学习 计算机视觉 卷积神经网络 |
收稿时间: | 2018-03-19 |
|
| 点击此处可从《自动化学报》浏览原始摘要信息 |
|
点击此处可从《自动化学报》下载免费的PDF全文 |
|