基于CNN多层特征和ELM的交通标志识别 |
| |
引用本文: | 孙伟,杜宏吉,张小瑞,赵玉舟,杨翠芳. 基于CNN多层特征和ELM的交通标志识别[J]. 电子科技大学学报(自然科学版), 2018, 47(3): 343-349. DOI: 10.3969/j.issn.1001-0548.2018.03.004 |
| |
作者姓名: | 孙伟 杜宏吉 张小瑞 赵玉舟 杨翠芳 |
| |
作者单位: | 1.南京信息工程大学信息与控制学院 南京 210044 |
| |
基金项目: | 国家自然科学基金61304205国家自然科学基金61502240国家自然科学基金61203273江苏省自然科学基金BK20141002江苏省大学生实践创新训练计划201710300050江苏省大学生实践创新训练计划201710300051 |
| |
摘 要: | 针对传统神经网络仅利用端层特征进行分类导致特征不全面,以及交通标志识别中计算量大、时间长等问题,提出基于多层特征表达和极限学习机的交通标志识别方法。利用CNN网络提取多层交通标志特征图;采用多尺度池化操作,将提取出的各层特征向量联合形成一个具有多尺度多属性特征的交通标志特征向量;使用极限学习机分类器准确快速地实现交通标志的识别。实验结果表明,该方法能有效地提高交通标志识别的准确率,且具有较好的泛化能力和实时性。
|
关 键 词: | 极限学习机 多层特征 多尺度池化 交通标志识别 |
收稿时间: | 2017-10-30 |
Traffic Sign Recognition Method Based on Multi-layer Feature CNN and Extreme Learning Machine |
| |
Affiliation: | 1.School of Information and Control, Nanjing University of Information Science & Technology Nanjing 2100442.Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology Nanjing 2100443.School of Computer and Software, Nanjing University of Information Science & Technology Nanjing 210044 |
| |
Abstract: | The traditional neural network only uses the end-layer feature and needs massive and time-consuming computation in the traffic sign recognition, thereby resulting in an inaccurate and non-real-time classification. To solve the problem, a traffic sign recognition (TSR) method based on multi-layer feature expression and extreme learning machine (ELM) is proposed. Firstly, the multi-layer features of traffic signs are extracted using the convolutional neural network (CNN). Then, the multi-scale pooling operation is used to combine the extracted feature vectors of each layer to form a multi-scale multi-attribute traffic sign feature vector. Finally, the extreme learning machine (ELM) classifier is used to realize the classification of traffic signs. Experimental results show that the proposed method can effectively improve the accuracy and it has strong generalization ability and real-time performance in TSR. |
| |
Keywords: | |
|
| 点击此处可从《电子科技大学学报(自然科学版)》浏览原始摘要信息 |
|
点击此处可从《电子科技大学学报(自然科学版)》下载全文 |