首页 | 本学科首页   官方微博 | 高级检索  
     

融合对抗学习的因果关系抽取
引用本文:冯冲, 康丽琪, 石戈, 黄河燕. 融合对抗学习的因果关系抽取. 自动化学报, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481
作者姓名:冯冲  康丽琪  石戈  黄河燕
作者单位:1.北京理工大学计算机学院 北京 100081;;2.北京理工大学自然语言处理实验室 北京 100081
摘    要:因果关系抽取在事件预测、情景生成、问答以及文本蕴涵等任务上都有重要的应用价值.但多数现有的因果关系抽取方法都需要人工定义模式和约束,且严重依赖知识库.为此,本文利用生成式对抗网络(Generative adversarial networks,GAN)的对抗学习特性,将带注意力机制的双向门控循环单元神经网络(Bidirectional gated recurrent units networks,BGRU)与对抗学习相融合,通过重定义生成模型和判别模型,基本的因果关系抽取网络能够与判别网络形成对抗,进而从因果关系解释信息中获得高区分度的特征.实验结果表明,与当前用于因果关系抽取的方法相比较,该方法表现出更优的抽取效果.

关 键 词:因果关系抽取   生成式对抗网络   注意力机制   对抗学习
收稿时间:2017-08-31

Causality Extraction With GAN
FENG Chong, KANG Li-Qi, SHI Ge, HUANG He-Yan. Causality Extraction With GAN. ACTA AUTOMATICA SINICA, 2018, 44(5): 811-818. doi: 10.16383/j.aas.2018.c170481
Authors:FENG Chong  KANG Li-Qi  SHI Ge  HUANG He-Yan
Affiliation:1. School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081;;2. Natural LanguageProcessing Laboratory, Beijing Institute of Technology, Beijing 100081
Abstract:Causality extraction is of important practical value in tasks such as event prediction, scenario generation, question answering, and textual implication; but most of the existing causality extraction methods require artificial definition of patterns and constraints and are heavily dependent on knowledge base. In this paper, the bidirectional gated recurrent units networks (BGRU) with attention mechanism are merged with confrontational learning by leveraging the confrontational learning characteristics of generative adversarial networks (GAN). Through redefining the generator and discriminator, the basic causality extraction network can construct a confrontation with the discriminator, and then obtain a high distinguishing feature from the causality interpretation information. Our experiments show that our approach leads to an improved performance over strong baselines.
Keywords:Causality extraction  generative adversarial network (GAN)  attention mechanism  adversarial learning
点击此处可从《自动化学报》浏览原始摘要信息
点击此处可从《自动化学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号